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Coherence solution for bidirectional reflectance
distributions of surfaces

with wavelength-scale statistics
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The scalar bidirectional reflectance distribution function (BRDF) due to a perfectly conducting surface with
roughness and autocorrelation width comparable with the illumination wavelength is derived from coherence
theory on the assumption of a random reflective phase screen and an expansion valid for large effective rough-
ness. A general quadratic expansion of the two-dimensional isotropic surface autocorrelation function near the
origin yields representative Cauchy and Gaussian BRDF solutions and an intermediate general solution as the
sum of an incoherent component and a nonspecular coherent component proportional to an integral of the
plasma dispersion function in the complex plane. Plots illustrate agreement of the derived general solution
with original bistatic BRDF data due to a machined aluminum surface, and comparisons are drawn with pre-
viously published data in the examination of variations with incident angle, roughness, illumination wave-
length, and autocorrelation coefficients in the bistatic and monostatic geometries. The general quadratic au-
tocorrelation expansion provides a BRDF solution that smoothly interpolates between the well-known results
of the linear and parabolic approximations. © 2006 Optical Society of America

OCIS codes: 030.5770, 290.5880.
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. INTRODUCTION
he bidirectional reflectance distribution function

BRDF) describes one of the most basic optical phenom-
na: the average angular distribution of intensity re-
ected by a macroscopically planar, generally random me-
ium or surface illuminated by a plane wave incident
rom a specified direction. Under coherent laser illumina-
ion, provided that the illuminated area is much larger
han the scale of spatial inhomogeneities of the medium
r surface, the BRDF represents the radiant or angular
ntensity envelope under which the speckle pattern oc-
urs. The BRDF is of fundamental importance in diverse
pplications including data simulation and analysis in
oth laser radar1–3 and passive photometry4–6 of solid tar-
ets, laser industrial process control,7 high-energy laser
HEL) control,8 stray-light analysis,9 illumination
esign,10 and computer vision,11,12 animation,13 and vir-
ual reality.14–17

Theoretical models describe the dependence of the
RDF on the physical properties of the reflector, which for
urfaces may include the surface height distribution,
eight autocorrelation, slope distribution, and optical con-
tants. Models are typically valid over limited parameter
omains, with the most common delimiting surface pa-
ameter being the effective roughness

� � �h/�, �1�

here �h is the standard deviation of the surface height
istribution and � is the illumination wavelength.18,19
1084-7529/06/020314-15/$15.00 © 2
igorous numerical models have been developed within
imited domains of the surface autocorrelation length a,
or instance in the limit 2�a /�→�.20 Several recent re-
iews survey surface BRDF models within their respec-
ive ranges of validity.21,22 The most widely used models,
hich are all approximate analytical as opposed to nu-
erical models, are summarized below in order to provide

ackground for the developments of this paper.
Several surface BRDF models are well established in

he roughness domain ��1, which encompasses very
mooth, mirrorlike surfaces. The most widely used is the
ayleigh–Rice model, which gives the BRDF as propor-

ional to the power spectral density of the random process
hat describes the surface heights.23–25 Other prominent
odels in the small-roughness domain are based on per-

urbation theory25 and on the Ewald–Oseen extinction
heorem,25,26 the latter of which is also applicable in nu-
erical studies of rougher surfaces.27

Several analytical BRDF models have been developed
n the large-roughness domain ��1, although none has
njoyed very wide application, presumably due to a com-
ination of limited accuracy and difficulty of implementa-
ion. Beckmann provided the seminal BRDF model in the
arge-roughness domain by averaging the Kirchhoff dif-
raction integral of a generalized surface over the statis-
ical ensemble of surface realizations.28 The Beckmann
odel, which is also referred to as the Kirchhoff or

hysical-optics model, specifies the surface field by using
he tangent-plane approximation, which assumes that
ach point on the surface has a unique normal relative to
006 Optical Society of America
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hich a tangent plane can be assigned, and is therefore
enerally applicable only to surface features with radii of
urvature sufficiently larger than the illumination wave-
ength. In particular, surface profiles with discontinuous
erivatives are formally inadmissible under the tangent-
lane approximation, although pyramidal features with
acet dimensions �10� have been accurately described by
he Beckmann model.29 Extensions of the Beckmann
odel in the field of computer-graphic design have con-

ributed treatments of polarization and shadowing
ffects.30 The Stratton–Chu–Silver integral31 was applied
o optical scattering by Leader,32,33 with the surface fields
lso determined under the tangent-plane approximation.
hese models, as well as that developed in this paper, are
alid for large effective roughness ��1 in the absence of
ultiple scattering. For a specified �h the restriction on
ultiple scattering implies a proportional lower bound on

he autocorrelation length a.
Despite the development of diffractive BRDF models at

arious levels of rigor, many applications still rely on scat-
ering models based on geometrical optics. The
tationary-phase solution of the physical-optics integral
eads to specular-point or microfacet BRDF models,34–37

hich also rely on the tangent-plane approximation but
eglect diffraction, which, while affording simplicity of
pplication, also limits validity and flexibility. Microfacet
odels cannot, for instance, consistently account for
RDF variations with roughness or wavelength, nor
ther diffractive effects.

In this paper a scalar diffractive BRDF model valid for
urfaces with large effective roughness ��1 is developed
rom optical coherence theory and a reflective phase-
creen model. Departure from the tangent-plane approxi-
ation, enabled in this case by the phase-screen approxi-
ation, allows consideration of general surfaces with

arge and/or discontinuous slopes. The tangent-plane ap-
roximation is shown to be actually incompatible with the
oherence approach to the scattering problem (see Sub-
ection 2.A). Surfaces with large slopes and large effective
oughness fall outside of the ranges of applicability of the
ost popular approximate analytical models as men-

ioned above.22,38 The basis of the current model in coher-
nce theory provides a BRDF solution consistent and in-
erpretable within a classical framework, one result of
hich is the clarification of the coherence properties of

cattered fields (see Subsection 2.B). A second benefit of
he coherence approach is compatibility with a variety of
esults from coherence theory potentially relevant to scat-
ering analysis, for instance with recent developments in
lectromagnetic coherence theory.39–41

A general quadratic expansion of the surface autocorre-
ation function near the origin is used to derive an inte-
ral solution for the general BRDF due to a perfectly con-
ucting surface with arbitrary two-dimensional isotropic
oughness ��1. The general solution consists of an inco-
erent component that varies with the scattered elevation
ngle as cos �s, irrespective of the incident angle, plus a
onspecular coherent component proportional to the azi-
uthal integral of the Faddeeva or plasma dispersion

unction over the surface. The plasma dispersion function
s related to the complex error function and the Voight
rofile and arises in many areas of mathematical
hysics.42–44 When evaluated with representative auto-
orrelation types, the general solution yields the Cauchy
nd Gaussian BRDFs, which are forms commonly em-
loyed in empirical fitting routines.45 The general solu-
ion is seen to smoothly interpolate between these well-
nown forms. The large majority of BRDF models that
ely on expansion of the surface autocorrelation function
se the parabolic approximation, which forces a Gaussian
RDF solution. While several models have been based on

he linear approximation,46,47 this paper is apparently the
rst to derive the BRDF on the assumption of an autocor-
elation arbitrary to second order. Inclusion of the gradi-
nt in the autocorrelation expansion generally improves
greement with data due to surfaces with large slopes, in-
luding planetary surfaces48–50 and machined surfaces
see Subsection 3.A). It is argued in Subsections 2.B and
.A that the general solution overcomes long-standing ob-
ections to the well-known BRDF forms provoked by en-
rgy conservation and the linear autocorrelation
pproximation.25,51,52

For practical reasons only surfaces in the so-called
esonant domain a�� are examined in detail. Due to the
estriction on multiple scattering, the surface roughness
s therefore likewise limited as ��1. The surface statis-
ics are on the scale of the wavelength. The integral for
he general BRDF solution is evaluated and plotted by us-
ng Mathematica 5. Plots illustrate the agreement of the
eneral solution with original bistatic specular-plane
RDF data due to a machined aluminum surface, and its
ariation with incident angle, surface roughness, illumi-
ation wavelength, and autocorrelation coefficients in the
istatic and monostatic geometries. Out-of-plane scatter-
ng is illustrated in full-hemisphere plots for several sur-
aces. The plots are, where possible, compared qualita-
ively with previously published data due to surfaces with
imilar statistics.

. DERIVATION
n this section the general scalar surface BRDF solution
s derived in the limit ��1. The requisite theoretical
ackground is summarized, including Goodman’s deriva-
ion of the coherence function on a random reflective
hase screen.53 A general quadratic series expansion of
he surface autocorrelation appropriate for ��1 is ap-
lied, and the BRDF integral is specified for anisotropic
oughness. Under the assumption of isotropic roughness,
ith two representative autocorrelation types, this inte-
ral is shown to produce BRDF forms commonly observed
n measurements. The general BRDF integral for the iso-
ropically rough surface is cast as an integral of the Fad-
eeva or plasma dispersion function, several plots of
hich are given as encountered in scattering calculations.
The units of the BRDF are sr−1. The BRDF is related to

he ensemble-average radiant intensity distribution by

BRDF�ks,ki� = �I�ks,ki��/Pi cos �s, �2�

here ks,i is the reflected/scattered or incident wave vec-
or, respectively, Pi is the uniform incident power, and �s
s the elevation of the scattered wave vector measured
rom the average surface normal. The units of �I�ks ,ki��
re W/sr.54 Equation (2) specifies the BRDF as an average
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ver an ensemble of independent, identically distributed
IID) rough surfaces, which is typically realized in prac-
ice under the ergodic criterion as an average over a mea-
urement parameter such as in-plane surface displace-
ent or rotation. In this paper the average radiant

ntensity is referred to simply as the BRDF, although the
onversion of Eq. (2) must be applied to the results to re-
over the conventional radiometric quantity. Plotted re-
ults are given as radiant intensity with specified normal-
zations.

. Coherence-Theory Background
he application of coherence theory to the description of
adiometric properties of certain types of primary radia-
ion sources has been well described.55–57 In the treat-
ent of qualified illuminated surfaces as secondary

ources, statistical moments of scattered fields over en-
embles of surfaces are applied as coherence functions for
eneral analyses.58 The present derivation utilizes the
econd moment of the field scattered by a random, per-
ectly conducting phase screen with a Gaussian distribu-
ion of surface heights.53 This approach has been applied
ecently to the derivations of BRDF solutions for several
urface types.59,60

The surface illumination is idealized as a quasi-
onochromatic plane wave, which allows application of

he generalized Van Cittert–Zernike (VCZ) theorem to the
utual intensity (coherence) function on the surface. The

eneralized VCZ theorem relates the BRDF to the mutual
ntensity through a Fourier transform, provided that the
urface field is quasi-homogeneous.55,56,61 The quasi-
omogeneous assumption is satisfied when the spatial
cale of amplitude variations is much larger than the spa-
ial scale of coherence variations of the field, as will occur
n a surface with large effective roughness ��1 when the
ize of the illuminated area is much larger than the scale

ig. 1. Geometry and notation relevant to derivation of the
RDF at point P from the coherence between the surface points
1 and x2. 	x=x1−x2.
f spatial inhomogeneities. As demonstrated in Appendix
, the average scattered radiant intensity as a function of
ave vector is then given by the generalized VCZ theorem
s

�I�k̄s�� =
AM̄r cos2 �s

�̄2
�� ��	x�exp�− jk̄s · 	x�d	x,

�3�

here k̄s is the wave vector associated with scattered
uasi-monochromatic light of center wavelength �̄, A is
he illuminated area, M̄r is the average reflected emit-
ance (also known as exitance) over the surface, and ��	x�
s the normalized mutual intensity on the surface as a
unction of directed spatial separation.62 Dependence of
¯

r and ��	x� on the incident wave vector is implicit in
q. (3). For application of Eq. (3) the average surface is

aken to be coincident with the xy plane, and the scat-
ered wave vector is restricted to the xz plane. Equation
3) provides the BRDF over the entire reflected hemi-
phere by rotation of the surface and the vector argument
x= x̂	x+ ŷ	y of the mutual intensity function about the
axis. The geometry of Eq. (3) is illustrated in Fig. 1.
The derivation places several restrictions on the sur-

ace in addition to ��1, primarily that neither shadowing
or multiple scattering can occur. Following Goodman,53

he field at the surface is expressed as a function of the
urface height h�x� as

u�x� = a�x�exp�jk̄i · x�exp�2�j

�̄
�1 + cos �i�h�x�	

= a�x�exp�jk̄i · x�exp
j
�x��, �4�

here a�x� is the scattered amplitude and k̄i is the center
ave vector incident at the elevation angle �i relative to

he average surface normal. Figure 2 illustrates the ge-
metry of Eq. (4).

ig. 2. Illustration of the phase-screen approximation of the
cattered field on the rough surface. The field is specified on the
irtual surface Sps just above the actual surface, in contrast with
he tangent-plane approximation in which the field is specified
n the surface facets Stp, where the radius of curvature is suffi-
iently larger than the wavelength. The phase difference due to a
ateral separation of surface points is ki ·x, while the phase dif-
erence due to the surface height h�x� is kh�x��1+cos �i�. The
ngle �s is not relevant in the phase-screen approximation as it is
n the tangent-plane approximation.
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As shown in Fig. 2, the surface on which the scattered
eld is specified under the phase-screen approximation
Sps� differs from that under the tangent-plane approxi-
ation �Stp�. Both approximations are based on applica-

ion of the Helmholtz integral28 but differ in the boundary
urface on which the field is specified. Under the tangent-
lane approximation the term 1+cos �i in Eq. (4) is re-
laced by cos �s+cos �i, a distinction that affects not only
he model solution but also the fundamental interpreta-
ion of the scattering process. Since it depends on both
urface position x and scattering direction �s, the second
oment of the field under the tangent-plane approxima-

ion is a radiance function and therefore inadmissible as a
oherence function in Eq. (3).57 The implications of this
undamental incompatibility should be fully appreciated
hrough further investigations.

From Eq. (4) the phase variance and phase autocorre-
ation of the scattered field are

�

2 = 
2���1 + cos �i��2, �5�

R
�	x� = �2�

�̄
�1 + cos �i�	2

Rh�	x�, �6�

espectively, where Rh�	x� is the autocorrelation of the
wo-dimensional random process that describes the sur-
ace heights. In Eq. (4) the amplitude a�x� and the phase
�x� are assumed to be uncorrelated, allowing the nor-
alized mutual intensity to be expressed as

��	x� �
�u�x�u*�x − 	x��

��u2�x���u2�x − 	x��
=

exp�jk̄i · 	x�

�a2�x��
�a�x�a�x

− 	x���expj

�x� − 
�x − 	x����, �7�

here the quasi-homogeneous assumption allows simpli-
cation of the denominator. Under the conventional
hase-screen approximation the scattered amplitude a�x�
aries with x much more slowly than does the phase 
�x�,
n which case the normalized mutual intensity on the
ough surface becomes

��	x� = exp�jk̄i · 	x��expj

�x� − 
�x − 	x����. �8�

ecause the conventional phase-screen approximation as-
umes that every point on the surface responds identi-
ally to the incident field, it should be more accurate in
pecifying an electromagnetic scattered field component
erpendicular to the incident plane (s polarization) than a
omponent parallel to the incident plane (p polarization).
his is an important consideration in comparison of the
esults of the scalar model with data.

The ensemble average in Eq. (8) can be evaluated by
sing the second-order characteristic function with a
aussian distribution of surface heights to yield

��	x� = exp�jk̄i · 	x�exp− �

2
1 − �h�	x���, �9�

here �h�	x��Rh�	x� /�h
2 is the normalized surface auto-

orrelation function.53 Substitution of this result into the
CZ theorem of Eq. (3) provides the BRDF as
�I�k̄s,k̄i�� =
AM̄r cos2 �s

�̄2
�� exp− �


2
1 − �h�	x���

�exp
j�k̄i − k̄s� · 	x�d	x. �10�

ith 	k̄� k̄i− k̄s, 	k̄ ·	x represents the scattered wave-
ector distance from the direction of specular reflection.
n circular polar coordinates the BRDF expression be-
omes

�I�k̄s,k̄i�� =
AM̄r cos2 �s

�̄2
�

0

��
0

2�

�exp− �

2
1 − �h�	x���

�exp
j�	k̄ · 	x��rddr, �11�

ith the integration understood to cover the plane of co-
rdinate differences on the surface. In the coordinate sys-
em �r ,� we have

	k̄ · 	x = − k̄r�A cos  + B sin �, �12�

ith A�sin �s cos �s+sin �i cos �i and B�sin �i sin �i, the
ubscripts i and s referring to the incident and scattered
ave vectors. The azimuth angle �i�s� of the incident

scattered) plane wave should be distinguished from the
urface azimuth . The ranges of � and �i are 
0,� /2� and
−� ,��, respectively, and �s=0 or �, with k̄s confined to
he xz plane. These are standard notations in the descrip-
ion of BRDF instrumentation.63

. Large-Roughness Approximation
eries expansion of the surface autocorrelation �h�	x� in
he limit of large effective roughness ��1 allows the in-
egral of Eq. (11) to be developed for an arbitrary autocor-
elation and evaluated for a general isotropic autocorrela-
ion. With reference to Eq. (9), since for large �


2 the
utual intensity falls off rapidly as �h�	x� decreases from

h�0�=1, an approximation valid for large effective rough-
ess is provided by expansion of �h�	x� for small argu-
ents. The dependence of the mutual intensity on �h�	x�

s, however, generally not entirely evident in an expan-
ion centered on the origin 	x=0, since by definition
h�	x� is an even function with �h�0�=1, which for a gen-
ral surface implies that the gradient ��h vanishes in a
oint singularity at the origin. Due largely to this singu-
arity, the autocorrelation expansion has been controver-
ial among scattering theorists,64 which may explain why
he general quadratic expansion has apparently not ap-
eared earlier. Our position that the singularity can be ig-
ored is based less on mathematical than on physical in-
uition. To avoid the singularity, we expand the
utocorrelation about the vector �	x in the limit �→0.

. Anisotropic Roughness
he normalized surface autocorrelation is expanded in

wo dimensions as65
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�h�	x� � 1 + lim
�→0



	x · ��h��	x + 1
2 
�	x · ���	x · ��h���	x� .

�13�

pplication of the gradient operator in circular polar co-
rdinates and adoption of the shorthand notation �s�h
lim�→0�
��h /�s��	x�, where s=r or , leads to

�h�	x� � 1 + r��r�h� +


r
���h� +

r2

2
��rr�h� +

2

2r2 ���h�

+ ��r�h�. �14�

he derivatives �r�h ,��h , . . . are functions of the azimuth
ngle  in the case of general anisotropic roughness. Sub-
titution from Eq. (12) and relation (14) into Eq. (11) pro-
ides an integral expression for the BRDF of a general an-
sotropically rough surface with ��1. Evaluation of this
ntegral is generally difficult due to the mixed terms in re-
ation (14) and the azimuthal dependence of the deriva-
ives, although it might be simplified by approximation of
he autocorrelation by planar wedges over azimuthal in-
ervals. The prevalence of anisotropic roughness in pro-
essed surfaces should motivate future investigation of
he general theory; however, in this paper subsequent at-
ention is limited to isotropic roughness.

. Isotropic Roughness
surface with isotropic roughness is described by a sur-

ace autocorrelation with azimuthal symmetry, for which
ll derivatives with respect to  vanish. In this case sub-
titution from Eq. (12) and relation (14) into Eq. (11) pro-
ides the BRDF as

�I�k̄s,k̄i�� �
AM̄r cos2 �s

�̄2
�

0

��
0

2�

�exp
− jk̄r�A cos  + B sin ��d

�exp��

2��r�h�r +

�

2

2
��rr�h�r2	rdr, �15�

ith A and B as defined following Eq. (12). Note that the
erivatives �r�h and �rr�h are constants on an isotropically
ough surface. The integral over azimuth is evaluated by
ntroducing the variables � and � such that A=� cos � and
=� sin �, which leads to66

�
0

2�

exp
− jk̄�r cos� − ���d = 2�J0�k̄�r�, �16�

here J0 is the zeroth-order Bessel function and

� = �sin2 �s + sin2 �i + 2 sin �i sin �s cos �i cos �s �17�

s the bidirectional independent variable of the BRDF.
Substitution of the result of Eq. (16) into relation (15)

eaves the BRDF expression
�I�k̄s,k̄i�� �
2�AM̄r cos2 �s

�̄2
exp��v2��

0

�

rJ0�k̄�r�

�exp
− ��r + v�2�dr �18�

fter completing the square in the exponent and setting

v � �r�h/�rr�h, �19�

� � �

2��rr�h�/2. �20�

The integral in relation (18) is the Fourier–Bessel or
eroth-order Hankel transform of a shifted Gaussian
unction.67 The radial derivatives of the isotropically
ough surface are hereafter represented in the simplified
otation �1��r�h and �2��rr�h.
It is instructive to examine the representative forms of

he BRDF solution as the derivatives �1 and �2 individu-
lly go to 0. With �1=0 the solution of relation (18) leads
ransparently to the Gaussian BRDF68

�I�k̄s,k̄i�� �
�AM̄r cos2 �s

�̄2�
exp�−

�k̄��2

4�
	 , �21�

hich is consistent with models that neglect the role of
he gradient ��h by assuming a Gaussian surface autocor-
elation function. With �2=0 the variable v cannot be
sed. Returning in this case to relation (15) and Eq. (16)
ields the Cauchy BRDF69

�I�k̄s,k̄i�� �
2�AM̄r cos2 �s

�̄2

�

2��1�


�

4�1

2 + �k̄��2�3/2
. �22�

he Cauchy BRDF is commonly observed in data due to
urfaces with large slopes48–50 and as a result is com-
only employed in empirical fitting routines.45

The results of relations (21) and (22) suggest a useful
lassification, according to the shape of the surface auto-
orrelation, of isotropically rough surfaces that satisfy the
ssumptions of the model. Such surfaces with ��2�� ��1�
ill be referred to as Gaussian-like surfaces, while those
ith ��1�� ��2� will be referred to as Cauchy-like surfaces,
lthough the actual functional form of the general BRDF
olution will generally differ significantly from the repre-
entative forms of relations (21) and (22).

General BRDF solution for isotropic roughness in terms
f the plasma dispersion function. The integral of relation
18) can be recast as an integral of the Faddeeva or
lasma dispersion function over a horizontal contour in
he complex plane. The resulting solution suggests a de-
omposition of the BRDF into coherent and incoherent
omponents as well as a mathematical analogy between
ave scattering from rough surfaces and wave propaga-

ion in hot, underdense plasmas.70 The integrals consid-
red are also similar to those encountered in the analysis
f generalized Bessel–Gauss beams.72

The Fourier–Bessel or zeroth-order Hankel transform
f an arbitrary circularly symmetric function g�r� is67,73
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Bg�r�� = G�R� =�
0

�

rJ0�Rr�g�r�dr. �23�

xpressing the Bessel function in its integral form, as in
q. (16), and changing the order of integrations in rela-

ion (18) gives

Bexp
− ��r + v�2�� = G�R�

=
1

2�
�

0

2��
0

�

r exp�− jRr cos �

�exp
− ��r + v�2�drd

=
1

2�
�

0

2�

G1�R cos �d, �24�

here the subscript 1 denotes the one-dimensional trans-
orm and R= k̄� from relation (18). With the use of the
horthand notation X� k̄� cos , standard substitution
ethods with t=���r+v+ jX /2�� lead to

G1�X� =
1

�
exp�− �v2 − �2���

−j�

�

t exp�− t2�dt + ��

��v +
jX

2�
��

−j�

�

exp�− t2�dt	 , �25�

here

� � jv�� −
X

2��
. �26�

he contour of integration in Eq. (25) is a line parallel to
he real axis in the right half of the complex plane. The
rst integral in Eq. (25) produces 1

2 exp��2�, the terms in
of which cancel with the prefactor, while the second in-

egral is the complementary complex error function
� erfc�−j�� /2.42 Slight rearrangement leads to

G1�X� =
exp�− �v2�

2�
�1 − ����v +

jX

2�
�exp�− �2�erfc�− j��	

=
exp�− �v2�

2�
�1 − ����v +

jX

2�
�w���	 , �27�

here w�z�=K�z�+ jL�z� is the Faddeeva or plasma disper-
ion function.42–44,70,71 Inserting the expression for G1
ack into Eq. (24), we express the Fourier–Bessel trans-
orm as

G�R� =
exp�− �v2�

2�
�1 −��

�
�

0

� �v +
jk̄� cos 

2�
�w���d	

=
exp�− �v2�

2�
�1 +

k̄�

2���
�

0

�

L����cos �d	 , �28�

here the final equality follows because w��� is analytic
nd Hermitian along the horizontal contour in the upper
alf of the complex plane.44,70

Inserting Eq. (28) into relation (18) gives the general
RDF solution for the isotropically rough surface as
�I�k̄s,k̄i�� �
�AM̄r cos2 �s

�̄2�
�1 +

k̄�

2���
�

0

�

L����cos �d	 .

�29�

The solution of relation (29) is a sum of incoherent and
oherent terms. The incoherent term produces an average
adiant intensity proportional to cos2 �s (not cos �s, as for
Lambertian source),74 which leaves the integral of the

lasma dispersion function to represent the BRDF due to
oherence on the surface. Calculations of L�z� have been
lotted in several references.44,70 L�z� tends to 0 as the
eal part of its argument goes to 0 in the upper half of the
omplex plane 
Im�z��0�. With Re ��1/�h���2�, relation
29) therefore implies that the derived BRDF converges to
he incoherent solution ��AM̄r cos2 �s� / �̄2� for surfaces
ith sufficiently narrow autocorrelation or sufficiently

arge roughness. Referring to Eq. (9), the mutual inten-
ity associated with the incoherent solution is quite nar-
ow as expected. Coherence theory reveals that associated
ith a general coherence function are both propagating

low-frequency) and nonpropagating or evanescent (high-
requency) components.74–76 It has been demonstrated
hat the partition of energy between propagating and eva-
escent components varies smoothly between the incoher-
nt and coherent limits of a Gaussian coherence
unction.75 Since the BRDF solution accounts for the
ropagating component only, these results from coherence
heory imply that the BRDF should not be expected to
onserve energy. The factor � in the denominator of rela-
ion (29) ensures that the BRDF solution does not con-
erve energy with variations in roughness or autocorrela-
ion width. Relation (29) specifically predicts that the
ncoherent BRDF solution vanishes, i.e., that the field
cattered from such a surface is purely evanescent, due to
he limit �→� as �h�	x�→��	x�.77 To reiterate, contrary
o objections in the scattering literature,51,52 the BRDF
oes not conserve energy in general, and the energy in the
olution derived here varies smoothly with the parameter
.
Computer routines for the numerical calculation of L�z�

re readily available,44,78 although the variable depen-
ences implied by Eq. (26) and relation (29) must be care-
ully specified. The most suitable routine will depend on
he application, in particular on whether the solution of
he forward or the inverse scattering problem is required.
n the forward problem the BRDF is computed for speci-
ed surface parameters, while the inverse problem re-
uires a search algorithm to find surface parameters that
rovide the best fit to data. A comparison of algorithms
vailable for L��� is beyond the scope of this paper—here
he built-in complex error function routine in Math-
matica 5 (Ref. 78) is utilized for calculation of the plasma
ispersion function and the BRDF integral of relation
29). Figures 3 and 4 illustrate results of the Mathematica

routine in contour plots of the integrand �L���
�cos � /�� of the coherent component of the general so-

ution [relation (29)] for two scattering geometries and
wo sets of surface parameters. In these figures white cor-
esponds to 0, black corresponds to the minimum inte-
rand value, and contours are drawn at consistent inte-
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rand values across all of the plots. At a particular
cattering angle �s the coherent component of the BRDF
olution is proportional to the integral over the corre-
ponding horizontal line. Note that �L����cos � /���0 for
in the upper half of the complex plane.44,70

The characteristics of the general BRDF solution of re-
ation (29) are illustrated in Section 3 through plots rel-
vant to several applications of the forward and inverse
cattering problems. Applications to the inverse problem
re representative of the derived solution and do not uti-
ize a search/optimization algorithm. The general solution
s examined with variations of incident angle, surface
oughness, illumination wavelength, and autocorrelation
oefficients in the specular-plane bistatic and monostatic
eometries, and over the full scattered hemisphere. Plots
elevant to the forward problem are, where possible, com-
ared qualitatively with published data due to surfaces
ith similar statistics.

. RESULTS
he general BRDF solution given by relation (29) is de-
endent on eight parameters: the source (�i, �i, and �̄),
he surface (�h, �1, and �2), and the observation param-
ters (�s and �s). Practical considerations and the math-
matical assumptions of the model place restrictions on
he surface parameters as follows: Referring to Eq. (9),
ithout introducing higher derivatives of the surface au-

ig. 3. Contour plots of the integrand of the coherent compo-
ent of the general BRDF solution, which is proportional to the

maginary part of the plasma dispersion function, for two sur-
aces, for scattering in the specular plane at two incident angles,
s functions of the scattering angle �s and the azimuthal corre-
ation variable . The coherent component of the BRDF at �s is
roportional to the integral over the corresponding horizontal
ine. Fixed parameters for these plots are �̄=1 �m, �1
−0.005 �m−1, �2=−0.005 �m−2, and �=2 [(a), (b)] or �=3 [(c),

d)]. White represents 0, and dark shades represent negative val-
es in gray-scale coding.
ocorrelation, the assumption of large effective roughness
an be approximately imposed as �h��̄ /4��0.08�̄. For
he following (other than Figs. 7 and 10) the wavelength
s fixed at �̄=1 �m. The second derivative of the surface
utocorrelation is fixed at �2=−0.005 �m−2, and the first
erivative is limited to the range −0.05 �m−1��1�0,
hich places a conservative lower bound on the autocor-

elation width of a�25 �m. Multiple scattering, for
hich the model does not account, has been shown

hrough the appearance of coherent backscattering to oc-
ur on surfaces for which the ratio �h /a�0.2.79 Imposing
he upper bound �h�5 �m should therefore avoid sur-
aces with significant multiple scattering. The surface cor-
esponding to the plots in Figs. 7 and 10 below is specified
n the literature and has a larger autocorrelation width
nd larger roughness for which the assumptions of the
odel still hold. Computations of the two-dimensional

lots of specular-plane bistatic scattering with � /100
esolution take approximately 30 s in Mathematica 5 un-

ig. 4. Contour plots of the integrand of the coherent compo-
ent of the general BRDF solution, which is proportional to the

maginary part of the plasma dispersion function, for the two
urfaces specified in Fig. 3, for scattering normal to the specular
lane, as functions of the scattering angle �s and the azimuthal
orrelation variable . Fixed parameters for these plots are (a)
=1 �m, �1=−0.005 �m−1, �2=−0.005 �m−2, and �=2 or (b) �
3.
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er the Microsoft Windows XP operating system on a 1.6
GHz Intel Pentium 4 Mobile CPU with 512 Mbyte RAM.

The relatively little published data due to surfaces with
avelength-scale statistics against which the results of

he model can be compared are summarized as follows,
ith the illumination wavelength and reported surface
arameters given in the format ��̄ ,�h ,a� �m. The much-
ited paper of O’Donnell and Méndez provides plots of the
adiant intensity measured in the specular plane due to
llumination at several angles �i of a gold surface with the
ell-defined statistics (0.6328, 2.3, 21) (Ref. 79); the auto-

orrelation of this surface is, however, almost exactly
aussian, which relegates comparisons with the results
f the current model to the pure Gaussian BRDF solution
f relation (21). Several authors have reported measured
ackscattered or monostatic BRDFs due to surfaces with
tatistics in the range of interest, specifically Renau et al.
or two aluminum surfaces characterized by (0.6328, 7,
0) and (0.6328, 1, 10) (Ref. 80) and Cheo and Renau for
he former surface at the illumination wavelengths
.6328, 3.39, and 10.6 �m.81 Other data due to surfaces
ith wavelength-scale statistics are marginally relevant
ecause the surfaces are either one-dimensionally rough82

r nonconducting.19 Considerably more data due to sur-
aces in this range are clearly needed.

. Variation with Incident Angle

. Specular-Plane Bistatic
he specular-plane variation with the incident angle �i of

he general BRDF solution is illustrated in Fig. 5 for
hree surfaces. For the effective roughness �=0.75 fixed
n Fig. 5, the radiant intensity due to the Gaussian-like
urface of Fig. 5(a) maintains a nearly Gaussian form
ymmetric about the specular direction for small �i, which
s consistent with the data reported by O’Donnell and

éndez.79 The maximum intensity scattered by the sur-
aces considered in Fig. 5 decreases with �i, although the
pposite behavior, maximum scattered intensity increas-
ng with �i, is predicted by the model (but not shown) for
urfaces with the fixed parameters of Fig. 5 and larger
�1�. A familiar feature of the scattered intensity of suffi-
iently rough surfaces is the so-called off-specular peak,
hich is a shift of the mode or the angle of maximum in-

ensity away from the specular direction toward the sur-
ace normal. In the coherence interpretation of the BRDF
he off-specular peak occurs naturally as the coherent
omponent decreases. Figure 5 suggests that the shift of
he mode is dependent on the functional form of the sur-
ace autocorrelation. For instance, at �i=30° the mode due
o the Gaussian-like surface of Fig. 5(a) is in the specular
irection, while the mode due to the Cauchy-like surface
f Fig. 5(c) is shifted by more than 5°.

Significant features of the general BRDF solution evi-
ent in Fig. 5 are the lobes or wings that persist far from
he specular direction in scattering by the intermediate to
auchy-like surfaces. This feature, which is most relevant
t low relative intensities far from the specular direction,
s commonly observed in measurements, for instance in
he (s-polarized) specular-plane intensity, plotted loga-
ithmically in Fig. 6, due to a milled, black-anodized alu-
inum plate illuminated with �̄=1.06 �m (s-polarized) at
i=30°.83 In Fig. 6 the squares represent the measured
ata points, which are fitted without optimization by the
erived BRDF solution for the intermediate surface given
y the solid curve. Some popular models1,2,30 account for
he wings observed in many BRDF measurements by add-
ng to the Gaussian BRDF a so-called diffuse or Lamber-

ig. 5. Variation with incident angle �i of the general solution
or the radiant intensity in the specular plane due to (a) a
aussian-like ��1=−0.0001 �m−1�, (b) an intermediate ��1
−0.005 �m−1�, and (c) a Cauchy-like ��1=−0.02 �m−1� surface.
he units on the vertical axes are normalized across the plots,
nd �2=−0.005 �m−2, �h=0.75 �m, and �̄=1 �m are fixed. The
ertical dashed lines mark the specular direction for �i=30°.
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ian term, which is commonly ascribed to multiple scat-
ering. Our results suggest that the wings observed in
any BRDF measurements are due not necessarily to
ultiple scattering but rather to non-Gaussian surface

utocorrelation functions with nonvanishing gradients
ear the origin.
A significant feature of the general BRDF solution il-

ustrated by Fig. 6 is the considerable variation in the an-
ular energy distribution among surfaces with similar
tatistics � and a but different autocorrelation coeffi-
ients. Specifically, the three model curves in Fig. 6 have
he same effective roughness �=0.35 and the same auto-
orrelation lower bound a�19 �m, yet the corresponding
RDFs differ by up to 3 orders of magnitude. This behav-

or of the general solution may explain the large discrep-
ncies in the predictions of earlier models applied to the
nverse problem of topographical mapping from BRDF
ata. The fits of models based on the linear autocorrela-
ion approximation to lunar radar returns radically over-
stimate the size of lunar surface features.51 The solution
f the current model that most closely resembles the so-
utions of earlier models based on the linear autocorrela-
ion approximation is that due to the Cauchy-like surface
see relation (22)]. With reference to Fig. 6, the solution
ue to the Cauchy-like surface with the correct statistics
s in poor agreement with the data. If the current model
ere restricted to only Cauchy-like surfaces, as are mod-
ls based on the linear autocorrelation approximation,
hen agreement with the data in Fig. 6 could be achieved
nly by assuming a much smaller coefficient ��1� (with �2
0), which implies a surface autocorrelation much larger

han 19 �m, i.e., the fit of the solution due to the Cauchy-
ike surface overestimates the size of the surface features.
he addition of a possibly small Gaussian component,
ade possible by the general quadratic autocorrelation

xpansion, may therefore provide significant improve-

ig. 6. Derived solution for the radiant intensity (solid curve) fit
o data (squares) due to a milled, black-anodized aluminum sur-
ace with the illumination at �i=30° and the detection both in the
-polarization component. The dotted and dotted–dashed curves
epresent the derived radiant intensities due to Gaussian-like
nd Cauchy-like surfaces, respectively, with the same autocorre-
ation lower bound as that for the surface corresponding to the
olid curve. Logarithms of the measured and derived radiant in-
ensities are plotted following independent normalizations, and

h=0.35 �m and �̄=1 �m are fixed. The results imply that the
urface autocorrelation function is non-Gaussian.
ents over previous results in topographical mapping of
uch surfaces.

. Monostatic
he backscattered or monostatic BRDF is most relevant

n laser-radar applications, where the source and detector
re usually collocated on the same platform. The mono-
tatic BRDF gives the backscattered cross section as a
unction of the orientation of the target planar reflector.1,2

he monostatic geometry is specified notationally as k̄s=
k̄i, or �s=�i and �s=�i=0. Figure 7 illustrates the mono-
tatic radiant intensities due to three surfaces according
o the general solution of relation (29) with fixed illumi-
ation and surface parameters corresponding to those re-
orted by Renau et al.80 As in Fig. 6, logarithmic plots re-
eal dramatic differences among the BRDFs due to
urfaces with similar statistics (�=7 �m and a�58 �m)
ut different autocorrelation coefficients, particularly in
he backscattered intensities far from the specular direc-
ion. The monostatic BRDF due to the surface correspond-
ng to the solid curve in Fig. 7 is in qualitative agreement
ith the previously published data80 for incident angles
p to around 40°, beyond which the derived solution for
his surface underestimates the backscattered intensity.
ll of the surfaces corresponding to the plots in Fig. 7 are
aussian-like ���2�� ��1��; however, the monostatic BRDF
ue to the purely Gaussian surface ��1=0� compares very
oorly with the published data. The previously published
ata against which the model curves are compared in Fig.
have been previously fitted to about the same level of

ccuracy by a model based on parabolic perturbation of a
et of Gaussian-distributed microfacets using an appar-
ntly large, albeit undisclosed, number of arbitrary
oefficients.84

The results of Fig. 7 demonstrate the extremely sensi-
ive dependence of the monostatic BRDFs due to surfaces
ith large effective roughness on the surface autocorrela-

ion coefficients and emphasize the need to allow for even
inuscule deviations from the Gaussian autocorrelation

n the development of credible scattering models. It is also
orth noting that the general monostatic BRDF solutions

ig. 7. Derived monostatic radiant intensities due to three sur-
aces with the same autocorrelation lower bound and �h=7 �m
lluminated with �̄=0.6328 �m. The logarithms of the derived ra-
iant intensities are plotted following independent
ormalizations.
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ue to Cauchy-like surfaces with large autocorrelation
idths (not shown) agree qualitatively with previously
ublished radar data due to planetary surfaces.48–50

. Variation with Surface Roughness

. Specular-Plane Bistatic
igure 5 indicates the dependence of the mode angle of
he general BRDF solution on the surface autocorrelation
oefficients at fixed surface roughness. The mode shift is
xpected to increase as the coherent component of the
RDF solution decreases due to increasing roughness.
igure 8 illustrates this effect as well as the dramatic de-
endence of the mode shift on the autocorrelation coeffi-
ients. For �=2 the radiant intensity due to the Cauchy-
ike surface in Fig. 8(c) is centered near the surface
ormal, resembling the incoherent solution, while the in-
ensity due to the Gaussian-like surface in Fig. 8(a) is
entered less than 10° from the specular direction �s
45°. We emphasize that the phenomenon of the off-
pecular peak is not necessarily reliant on shadowing, as
as been claimed based on microfacet analyses,35 but is
ather the result of coherence loss in the ensemble-
verage scattered surface field. As discussed in Subsec-
ion 2.B, coherence loss is accompanied by an increasing
vanescent component that removes energy from the
RDF, an effect also evident in Fig. 8.

. Full Hemisphere
igure 9 illustrates the logarithmic variation over the full
cattered hemisphere of the model radiant intensities due
o intermediate surfaces at two roughness values. The
urface corresponding to Fig. 9(a) is the same as that
hich generates the BRDF solution fit to the specular-
lane data due to the aluminum surface in Fig. 6. The
ongitudinal lines in the plots of Fig. 9 correspond to the
zimuth �s in 10° increments, the latitudinal lines corre-
pond to the elevation �s in 0.9° increments, and the inci-
ent direction ��i=30° � is indicated by the vertical ar-
ows. The ripple at �s�20° in the backscattered radiant
ntensity due to the smoother surface [Fig. 9(a)] is likely a
umerical artifact.

. Spectral Variation
avelength scaling of the BRDF is important for many

pplications. For instance, for HEL applications the
RDF is usually measured in a laboratory at wavelengths
ifferent from those used in the field, in which case the
ccuracy of radiometric simulations and analyses are
quarely dependent on an understanding of the spectral
ariations of the BRDF. For broadband applications such
s passive photometry, illumination design, and computer
raphics and vision, wavelength-scaling algorithms pre-
lude time-consuming tabulations of the BRDF over the
ource spectrum.

Certain of our results provide insights into the diffrac-
ive spectral variation of the BRDF. In particular, with
eference to Eqs. (1) and (5) and relation (21), the pure
aussian BRDF solution is found to be diffractively ach-

omatic or independent of wavelength except for the re-
ected emittance M̄r, which is a result that has been
oted before.32 By contrast, the Cauchy solution of rela-
ion (22) is highly dispersive and nonmonotonic, with
avelength dependence proportional to �̄2 / 
1+ �c��̄�2�3/2

ith c=1/8��h
2��1� and a maximum intensity at the wave-

ength �̄max���=�2/c�. These results suggest that the dif-
ractive spectral variation of the BRDF is strongly depen-
ent on the surface autocorrelation coefficients. Figure 10
epicts the diffractive spectral variation of the BRDF so-

ig. 8. Variation with roughness �h of the general solution for
he radiant intensity in the specular plane ��i=45° � due to (a) a
aussian-like ��1=−0.0001 �m−1�, (b) an intermediate ��1
−0.005 �m−1�, and (c) a Cauchy-like ��1=−0.02 �m−1� surface.
he units on the vertical axes are normalized across the plots,
nd �2=−0.005 �m−2 and �̄=1 �m are fixed.
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ution in monostatic plots at three wavelengths, moti-
ated by previously published data due to an aluminum
urface.81 The autocorrelation coefficients used to gener-
te the model curves in Fig. 10 are those determined in
ig. 7, although as in Fig. 7 the fits are representative
ithout use of an optimization routine. The spectral trend
f the solution agrees with that of the data, although as in
ig. 7 the solution somewhat underestimates the data.
heo and Renau noted that the measured monostatic
RDF at normal incidence is independent of wavelength
rovided that �h /��0.25. The general BRDF solution is
onsistent with this observation, as evidenced by the nor-
alization of all of the curves in Fig. 10 by the solution at

ormal incidence for �̄=0.6328 �m. In fact, relation (29)
eveals that the diffractive portion of the general BRDF
olution is achromatic in the specular direction irrespec-
ive of the illumination and surface parameters. We
hould, however, emphasize that the general solution and
he plots in Fig. 10 do not include spectral variation of the

ig. 10. Derived monostatic radiant intensities due to a surface
lluminated at three wavelengths. Fixed surface parameters are
h=7 �m, �1=−0.00002 �m−1, and �2=−0.0006 �m−2. The loga-
ithms of the derived radiant intensities are plotted following
oupled normalizations.

ig. 9. Full-hemisphere plots of the derived general solution fo
espond to scattered azimuth angle �s, the latitudinal lines cor
30° � is indicated by the vertical arrows. Fixed parameters ar
h=1 �m (b). The logarithms of the radiant intensities are plotte
eflected emittance M̄r that occurs due to surfaces of non-
erfect conductors.

. CONCLUSIONS
n this paper some established concepts from the theories
f scattering and coherence are utilized to develop a
odel for the description of scattering from perfectly con-

ucting surfaces with wavelength-scale statistics. The
odel holds in principle for surfaces with any value of

arge effective roughness provided that shadowing and
ultiple scattering are negligible. Previously published
odels and measurements of surface scattering have con-

entrated primarily on either very smooth surfaces, for
hich theory is well developed and verified,85 or rougher

urfaces that exhibit multiple-scattering effects such as
oherent backscattering.79,86–88 Despite the ubiquity of
urfaces with statistics on the scale of the wavelength in
any of the applications noted earlier, progress in the de-

cription of scattering from such surfaces has been lim-
ted. Perhaps as a consequence, relatively few measure-

ents of scattering from such surfaces have been
eported.

While the ultimate value of coherence theory in scatter-
ng analysis is perhaps yet to be determined, several for-

alisms and interpretations introduced in this paper ap-
ear to extend the understanding of surface scattering.
he BRDF solution is derived as the sum of an incoherent
nd a coherent component, the latter of which is propor-
ional to an integral of the plasma dispersion function.
uch a decomposition allows for the interpretation of
cattering phenomena such as nonspecular maxima and
nergy conservation in the context of coherence theory,
here analogous phenomena of primary radiation sources
ave been thoroughly investigated. The solution also sug-
ests an analogy between surface scattering and wave
ropagation in plasmas that may prove useful. It is noted
hat the standard tangent-plane approximation for the
cattered field is incompatible with the coherence ap-
roach, and the alternative phase-screen approximation

adiant intensity due to two surfaces. The longitudinal lines cor-
d to scattered elevation angle �s, and the incident direction ��i

�m, �1=−0.005 �m−1, �2=−0.005 �m−2, and �h=0.35 �m (a) or
the range 
−3,0� following coupled normalization.
r the r
respon
e �̄=1
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llows for the consideration of surfaces with large and/or
iscontinuous slopes. The general BRDF solution interpo-
ates between the well-known Gaussian and Cauchy solu-
ions, behavior previously derived apparently only on the
ssumption of fractal surfaces.89

Several effects that the current model does not describe
hould motivate future investigations. Preliminary com-
arisons with data suggest that shadowing may be rel-
vant at large incident angles. It may be possible to incor-
orate shadowing and other effects into the model
hrough specification of the amplitude moment in Eq. (7),
ffectively extending the phase screen to an amplitude–
hase screen. Efforts are under way to extend the model
o the description of anisotropic roughness and electro-
agnetic (vector)-wave scattering through application of

ecent developments in electromagnetic coherence
heory.41 Throughout the development of this paper the
eflected emittance M̄r has remained a free parameter, al-
hough it obviously depends on the wavelength and the
ptical constants of the surface material. It may be pos-
ible to determine M̄r by using the results of the current
odel with global constraints such as Helmholtz

eciprocity.90 Such an approach would effectively deter-
ine the reflected emittance from surface correlations, in

ontrast to conventional attempts to determine emittance
rom surface slopes, which typically rely on the dubious
pplication of the Fresnel formulas to reflection from tan-
ent planes.

PPENDIX A
his appendix demonstrates the derivation of Eq. (3), the
eneralized Van Cittert–Zernike (VCZ) theorem in the
orm applicable to BRDF model development. We begin
ith the expression for the scalar optical field u at a point
inside a volume bounded by a known surface S, which is

iven by the Rayleigh–Sommerfeld (R-S) diffraction for-
ula as28,73

u�P� =
j

�
� �

S

u
exp�jkr�

r
�n̂ · r̂�dS, �A1�

here rr̂ is the vector from the surface to the point P and
ˆ is the surface normal. The R-S diffraction formula al-
ows derivation of the propagation law for the mutual in-
ensity, which for a common class of coherence states is
nown as the generalized VCZ theorem. Goodman pro-
ides a thorough reference on the VCZ theorem.61

In temporally stationary, narrowband light, i.e., 	���̄,
f the time delay � is much less than the coherence time �c,
he coherence function ��x1 ,x2 ,����u�x1 , t�u*�x2 , t−���
akes the form

��x1,x2,�� � ��x1,x2,0�exp�− 2�j�̄�� = J�x1,x2�

�exp�− 2�j�̄��, �A2�

here J is known as the mutual intensity and describes
nly the effects of spatial coherence. In regions where re-
ation (A2) is satisfied, the light is said to be quasi-

onochromatic with the center frequency �̄.91 Using the
-S formula of Eq. (A1), we express the propagation of the
utual intensity from a planar surface S to the pair of
oints �P1 ,P2� as

J�P1,P2� � �u�P1�u*�P2��

=
1

�̄2
� �

S
� �

S

�u�x1�u*�x2��
exp
jk̄�r1 − r2��

r1r2

��n̂1 · r̂1��n̂2 · r̂2�dx1dx2, �A3�

ith x�xx̂+yŷ as the two-dimensional vector over the
lanar surface S. Equation (A3) is reiterated as Good-
an’s Eq. 5.4-8.61

Several simplifications of Eq. (A3) occur in the context
f BRDF theory. First, only the propagated intensity is of
nterest, and therefore P1=P2=P. The scattering surface
s assumed to be globally planar, and the surface S is
aken as a phantom planar surface just above the actual
urface, which implies that n̂1= n̂2= ẑ. Also, the point P is
n the Fraunhofer, or far, zone of the illuminated portion
f the surface S, which leads to the usual Fraunhofer ap-
roximations. Specifically, with reference to Fig. 1, n̂1 · r̂1
n̂2 · r̂2=cos �, 1 /r1r2=1/Z2 in amplitude, and r=Z− ŝ ·x

n phase, where ŝ is the direction of the scattered wave
ector ks. With these simplifications the average irradi-
nce at the point P is derived from Eq. (A3) as

�I�P�� � J�P,P� �
cos2 �

�Z�̄�2
� �

S
� �

S

J�x1,x2�

�exp
jk̄ŝ · �x2 − x1��dx1dx2. �A4�

I�P�� is the power per unit area on a small detector cen-
ered in the direction ŝ at the distance Z from the surface.
t is convenient to eliminate Z by defining the radiant in-
ensity �I�k̄s���Z2�I�P��, which is the power per steradian
long ŝ. In the context of BRDF theory �·� in Eqs. (A3) and
A4) represents an average over both time and an inde-
endent, identically distributed (IID) ensemble of sur-
aces or media.

Fields scattered by rough surfaces typically satisfy two
ssumptions regarding the mutual intensity J�x1 ,x2� on
he surface. It is first assumed that the normalized mu-
ual intensity function � on the surface depends only on
oordinate differences, that is,

��	x� =
J�x1,x2�

�I�x1�I�x2�
, �A5�

hich will be satisfied if the surface heights are described
y a stationary random process.92 The conventions x2
x1−	x and 	x · x̂�0 are adopted for mutual intensities

hat satisfy Eq. (A5), which characterize sources known
s statistically homogeneous or shift invariant. The sec-
nd assumption is that the ensemble-average reflected ir-
adiance varies negligibly over the coherence area of the
cattered surface field, in which case

J�x1,x2� � I�x̄���	x�, �A6�

here x̄ is the average vector between x1 and x2. A field
hat satisfies relation (A6) is known as a quasi-
omogeneous field. In the context of BRDF theory the
uasi-homogeneous condition will be satisfied under flood
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llumination of a surface with spatially uniform rough-
ess on a scale greater than the illumination wavelength,

.e., for ��1. Surfaces with specular reflection compo-
ents, for which ��1, do not satisfy the quasi-
omogeneous condition. Inserting the mutual intensity
nder the quasi-homogeneous condition into Eq. (A4) and
hanging to sum and difference surface variables pro-
uces

I�k̄s�� �
cos2 �

�̄2
� �

S

I�x̄�dx̄� �
S

��	x�exp�− jk̄s · 	x�d	x

=
AĪr cos2 �

�̄2
� �

S

��	x�exp�− jk̄s · 	x�d	x, �A7�

here Īr is the average reflected irradiance over the illu-
inated area A. Equation (A7), which is identical to Eq.

3), is the generalized VCZ theorem as applicable to
RDF model development. The reflected irradiance is dis-

inguished from the irradiance on the detector by intro-
ucing the average emittance of the surface reflection as
¯

r� Īr. In this context the emittance is averaged over
ime, medium, and area.
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